Пролог

Однажды я уже изготовил стедикам (Steadycam) для фотокамеры, но должен признаться, что он не оправдал моих ожиданий.

Я себе представлял, что смогу с его помощью производить съёмку в движении, одновременно отслеживая перемещение объекта съёмки, но у меня ничего не получилось.

Первая же попытка съёмки в движении, проведённая в полевых условиях, с треском провалилась. Зато она выявила главный недостаток стедикамов маятникового типа – нарушение равновесия камеры, при постоянном ускорении или при движении по криволинейной траектории, например, по дуге.

У всех стабилизаторов, построенных по принципу маятника, центр тяжести находится чуть ниже точки опоры, что и приводит к смещению положения камеры при длительном ускорении или криволинейном движении. Причём, чем меньше масса подвижной части, тем ниже и стабильность, обеспечиваемая инерцией системы.

Другой, не менее существенный недостаток традиционного стедикама – отсутствие удобного управления положением камеры. Проще говоря, у оператора нет обыкновенной ручки, с помощью которой он мог бы оперативно направлять камеру на объект съёмки. Эту проблему я тоже пытался решить в своей первой конструкции, но управление оказалось не очень удобным, и совершенно бесполезным при съёмке в движении.

Наверное, операторы-виртуозы способны одновременно:

1. Следить за дорогой.

2. Удерживать в кадре объект съёмки.

3. Во время ускорения и замедления, нежно придерживать камеру, закреплённую на стедикаме.

Но мне с трудом удаётся осуществить и первые два пункта. Достаточно сосредоточиться на рельефе дороги (когда это не гладкий асфальт), как объект съёмки сразу выпадает из кадра. Посему, я уже было забросил попытки съёмки репортажного видео, но в связи со всплеском моды на трёхосевые электронные стедикамы, снова вернулся к своей мечте и попытался осуществить её бюджетными средствами.

Конечно, интересно было бы построить стабилизатор с микропроцессорным, сервоприводным управлением, тем более что электронно-программная часть стоит относительно недорого. Но общие затраты, включая датчики, сервомоторы и питание уже сравнимы со стоимостью бюджетной видеокамеры. Строить такую систему ради съёмки любительских роликов уж точно не стоит. Тогда уже целесообразнее доложить денег и купить более или менее приличный камкордер, в котором есть встроенная система электронной стабилизации.

В общем, я задался вопросом, а возможно ли вообще произвести в движении плавную съёмку с помощью любительской фотокамеры… Ведь на первый взгляд, у современной фотокамеры есть всего пара существенных отличий от видеокамеры.

Разбор отличий фотокамеры от видеокамеры в плане съёмки в движении

Первое отличие – отсутствие электронного стабилизатора. Но ведь никто не запрещает применить программную стабилизацию изображения к уже готовому видеоролику. К тому же, когда имеется исходное видео, то эту операцию можно произвести с учётом особенностей отснятого материала. Например, часть ролика можно стабилизировать, а часть зафиксировать, чтобы видео-картинка вообще не двигалась, будто съёмка велась со штатива.

Не стоит надеяться на оптический стабилизатор, который имеется в современных фотокамерах. Он может только ухудшить результаты видеосъёмки в движении, и его лучше отключить. Во всяком случае, обе мои камеры, при включённых оптических стабилизаторах, добавляют подёргивание в видео, снятое в движении, хотя и довольно хорошо справляются при неспешной съёмке.

Второе отличие – отсутствие запаса по размеру изображению, необходимого для постобработки с применением программной стабилизации. Дело в том, что при софтверной стабилизации, часть исходного изображения утрачивается.

В видеокамерах для нужд стабилизации изображение формируется с запасом, поэтому результирующая, уже стабилизированная картинка сохраняет заданное разрешение.

В фотокамере этот недостаток можно частично компенсировать, если при съёмке выбрать заведомо меньшее фокусное расстояние объектива и большее разрешение изображения, чем требуется для конечного кадра. Ведь, для любительского видео некоторое снижение предельного разрешения не столь критично, как нестабильность картинки на экране.

Если же съёмка ведётся в разрешении, превышающем разрешение конечного фильма, то потери будут и вовсе несущественны. Ведь каждое очередное разрешение видеокартинки превышает предыдущее в 1,5 раза.

Но даже с учётом вышесказанного, получить приличные результаты съёмки в движении не удаётся. Причина в потере значительной площади изображения, необходимой для программной стабилизации, и обусловленной слишком большой амплитудой дрожания фотокамеры. Кроме этого, резкие изменения положения камеры создают заметные артефакты изображения, с которыми не может справиться программа стабилизации изображения.

У меня никогда не было видеокамеры профессионального класса, но я всегда с интересом наблюдал, как профессиональные видеооператоры, меняя ракурс съёмки, заставляют камеру парить в пространстве. Они изменяют положение камкордера, как будто в руках у них спящий младенец. А благодаря встроенному в видеокамеру стабилизатору, плавность движения получается не хуже, чем при использовании самых навороченных электромеханических стедикамов. И хотя, подобные чудеса эквилибристики, операторы обычно вытворяют не в условиях быстрого движения, всё равно, становится ясно, что есть и другие отличия между профессиональной видеокамерой и любительской мыльницей.

Рассмотрим менее явные отличия любительских фотокамер от видеокамер, с учётом особенностей уже профессиональных камкордеров.

Третье отличие – малый вес любительской фотокамеры. Тогда как, видеокамера высокого класса может весить полтора килограмма и более, любительская мыльница редко дотягивает до 300-400 грамм.

Кроме этого, в отличие от фотокамеры, у камкордера вес распределён вдоль оптической оси объектива, что значительно улучшает инерционную стабилизацию изображения без дополнительных затрат.

Четвёртое отличие – отсутствие ручки. У профессиональных видеокамер есть расположенная сверху ручка, которая позволяет плавно перемещать видеокамеру в пространстве одной рукой.

Подозревая, что эта самая ручка и является одним из важных компонентов системы стабилизации видеокамеры в движении, я поставил несколько простых экспериментов, чтобы в этом убедиться. Вы можете их легко повторить, прежде чем браться за напильник и ножовку или покупать готовые гаджеты для стабилизации изображения.

Эксперименты с блюдцем

Быстро перемещаясь по дому с блюдцем, наполненным водой, я старался не пролить воду, применяя при этом разные приёмы и подручные средства.

Вот выводы, по этому эксперименту, которые, для лаконичности, я ограничил всего тремя пунктами:

1. Удобнее переносить блюдце на большом тяжёлом подносе, чем в руках.

2. Удобнее переносить блюдце одной рукой, чем двумя.

3. Удобнее переносить одной рукой блюдце на подносе, лежащем на дне полиэтиленового мешка, чем в случаях, описанных в пунктах 1 и 2.

Опыты позволили сделать два очевидных заключения.

1. Чем больше масса камеры, тем проще сгладить резкие движения при её перемещении.

2. Демпфировать движение камеры проще одной рукой.

Вы можете сказать, что подобные выводы можно было сделать и на основании умозрительных экспериментов. Не спорю. Просто, прежде чем браться за инструменты, мне хотелось убедиться в правильности своих догадок, ведь на рынке стабилизаторов изображения я не нашёл простых решений для съёмки в движении. Раз всё так просто, то почему их никто не производит…

Риг с инерционной стабилизацией изображения для фотокамеры

Внимание! Для получения плавной картинки, видео, снятое с помощью фотокамеры и этого самодельного гаджета, требует дополнительной обработки в видеоредакторе. Я для этого использую инструмент Warp Stabilizer программы Adobe Premiere.

С учётом всего вышесказанного, был спроектирован простой стабилизатор изображения, который получил рабочее название «Антистедикам», так как предполагалось, что он будет лишён недостатков, присущих традиционным стабилизаторам изображения маятникового типа, что в последствие и подтвердилось.

Всего было изготовлено два инерционных стабилизатора.

Один – полноразмерный, для использования недалеко от дома.

А другой – компактный, для использования вдали от дома.

Кроме этого, компактный стабилизатор получил «пляжное» расширение.

«Полноразмерным», прототип был назван потому, что при экспериментах на макете, его масса и размеры постепенно повышались до тех пор, пока не удалось получить необходимую плавность изображения, при беге по кочкам.

При использовании этого устройства, стабилизация изображения осуществляется за счёт инерции (равномерного движения или покоя) двух грузиков, разнесённых на максимально-возможное расстояние, ограниченное размерами и жёсткостью конструкции стабилизатора.

Минимально-возможное расстояние между осями, проходящими через оптическую ось объектива и центры масс грузиков, выбрано так, чтобы, при минимальном фокусном расстоянии объектива, в кадр не попали элементы передней части стабилизатора.

На этом чертеже представлен полноразмерный инерционный стабилизатор. С его помощью удалось получить очень хорошие результаты при съёмке во время бега по кочкам. Однако, даже с учётом того, что грузики можно было спрятать под горизонтальную планку, размеры девайса создавали неудобства при транспортировке.

Поэтому был изготовлен ещё одни более компактный инерционный стабилизатор, а именно, уменьшенный в полтора раза, по сравнению с прототипом. Естественно, что качество стабилизации пропорционально снизилось, но я подозреваю, что именно этот вариант приживётся в моём кофре.

Для крепления камеры к горизонтальной планке стабилизатора, была применена

Одна из ручек стабилизатора предназначена для съёмки в движении, а другая для неспешной съёмки с верхней точки.

Четыре грузика, общим весом 1,2кг, обеспечивают инерционную стабилизацию камеры во время движения оператора. Общий вес стабилизатора, снаряжённого камерой весом около 600гр, достигает 2кг.

Вес уменьшенной копии мало отличается от веса «старшего брата», но зато, при транспортировке, он занимает намного меньше места.

Это детали, из которых был собран инерционных стабилизатор.

Металл для заготовок можно выбрать любой, так как увеличение веса идёт только на пользу. Главное, обеспечить жёсткость конструкции. Грузики не должны раскачивать горизонтальную планку, а вертикальная планка должна оказывать достаточное сопротивление изгибу и кручению, во избежание возникновения паразитных затухающих колебаний.

При испытаниях макета, в качестве вертикальной планки, я использовал тонкостенный стальной швеллер, который как раз имел малое сопротивление кручению, что привело к возникновению паразитных колебаний камеры в горизонтальной плоскости.

Для надёжного крепления ручек, в них были просверлены отверстия, в которые, эпоксидным клеем, были вклеены металлические резьбовые втулки.

А вот так выглядит инерционный стабилизатор с установленной камерой в собранном виде.

Чтобы не везти с собой в путешествие грузики, было решено заменить их жёсткими 250-граммовыми ПЭТ бутылками, заполняемыми песком. Удельный вес песка по справочнику около 2,7гр/см³. При этом масса каждого из грузиков должна быть равна около 700гр. Такая масса и карта её распределения должны были бы обеспечить стабилизацию не хуже, чем при использовании полноразмерного стабилизатора.

Нужно сказать, что при испытаниях, с использованием речного песка, выяснилось, что вес заполненных бутылок достигает всего 1,2 кг. Однако, благодаря форме бутылок, качество стабилизации оказалась на уровне полноразмерного девайса.

Для обеспечения необходимой жёсткости конструкции, желательно выбирать самые плотные толстостенные бутылки, с крышками диаметром не менее 40мм. Нужно заметить, что этикетки бутылок, выполненные из термоусадочной плёнки, придают бутылкам дополнительную жёсткость. Такие этикетки удалять не следует.

Шайбы, охватывающие крышки с двух сторон, должны быть максимально-возможного размера.

Для того чтобы винт, крепящий угольник к горизонтальной планке стабилизатора, не прокручивался в буксе во время затягивания барашка, контактные поверхности буксы и винта были залужены, а затяжка винта в буксе произведена в нагретом состоянии.

Увеличение количества деталей этого узла связано с отсутствием крупных шайб с небольшим диаметром внутреннего отверстия.

А это «пляжный вариант» стабилизатора в собранном виде.

Для того чтобы, между съёмками, стабилизатор можно было установить на горизонтальную поверхность, в узел крепления одной из бутылок добавлен оконный угольник.

Недостаток этого стабилизатора в том, что он привлекает к себе излишнее внимание окружающих. Попытка надеть на бутылки чёрные носки большого эффекта не дала. Видимо, внимание привлекает необычная форма изделия.

Внимание! На всех чертежах, для упрощения, не показаны обычные и гроверные шайбы, которые желательно использовать при сборке и стопорении крепёжных элементов. Застопорить винты с потайными головками можно нитрокраской или лаком для ногтей.

О соотношении размеров инерционного стабилизатора

При отклонении камеры от горизонтальной оси, оператор вынужден фиксировать ручку стабилизатора в руке. Момент силы, передающийся руке оператора, прямо пропорционален длине вертикальной планки и весу камеры, и обратно пропорционален диаметру ручки. Поэтому, удобство управления камерой зависит от диаметра ручки. Для улучшения тактильных ощущений о положении ручки в руке, полезно сделать на ней небольшие концентрические углубления.

Нужно сказать, что размеры каждой детали стабилизатора, являются компромиссом между теми или другими параметрами устройства.

Например, чем тоньше ручка, тем труднее стабилизировать стедикам при ускорении, но чем толще ручка, тем слабее тактильное ощущение горизонта.

Другим компромиссом является выбор между размерно-весовыми показателями конструкции и качеством стабилизации. Чем длиннее горизонтальная планка и тяжелее грузики на её концах, тем выше качество стабилизации. Однако, при увеличении длины горизонтальной планки, её конец может попасть в поле зрения объектива, а увеличение веса делает переноску оборудования малокомфортной. Я не рекомендую увеличивать вес снаряжённого стабилизатора более 2,5кг, а предельный размер лучше подогнать под любимый кофр.

Рубрики: IT

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *