Беспроводные линии GSM. Протоколы, стандарты, безопасность в сетях GSM

Пользователей GSM (пользователей мобильных телефонов) больше, чем пользователей Интернета. Многих GSM-пользователей интересуют два вопроса:

  • Как использовать GSM-сеть для подключения компьютера к Интернету.
  • Как отправлять информацию непосредственно с мобильного телефона в Интернет (или как просматривать web-страницы с помощью мобильного телефона).

Попытаемся ответить на эти вопросы.

Стандарт GSM опубликован Европейским Телекоммуникационным Институтом Стандартизации (European Telecommunications Standard Institute ETSI).

Система GSM покрывает территорию, разбивая ее на ячейки — соты. Отсюда и название — сотовая связь. Каждая сота обслуживается одной BTS (Base Transceiver Station) — базовой станцией передатчика, попросту говоря передатчиком. Отдельные ячейки могут пересекаться (накладываться друг на друга), как показано на рисунке 1. При перемещении пользователя мобильного телефона из одной соты в другую, сота передает управление следующей соте — той, в которую переместился пользователь.

Давайте упростим задачу и будем считать, что наша система выглядит как на рисунке 2.

Что бы работала вся система GSM, очень важно отслеживать координаты пользователя. Несколько ячеек формируют область. Сеть постоянно обновляет информацию о местонахождении пользователя. Если нужно например найти пользователя, проверяются все ячейки определенной области.

Стандарт GSM использует две частоты:

  • Первичная частота — 900 МГц. Полоса пропускания — 25 МГц, то есть диапазон от 890 до 915 МГц или от 935 до 960 МГц.
  • Вторичная частота — 1800 МГц. Используются две полосы: от 1710 до 1785 МГц и от 1805 до 1880 МГц, то есть полоса пропускания в три раза выше, чем у GSM 900 (составляет 75 МГц).

Выделенные полосы пропускания делятся на секции по 200 КГц, использующиеся как станциями BTS, так и самими мобильными телефонами. Теоретически, первичная частота содержит 124 частоты. Так как две крайние обычно не используются, то у нас остается 122 частоты.

Одна ячейка может использовать 122/9 частот, то есть 13. На практике же одну занимает BTS, а остальные (от 4 до 12) используются мобильными телефонами.

На рисунке 3 изображена инфраструктура GSM:

  • Радио-интерфейс — используется для связи между станцией BTS и мобильным телефоном.
  • BTS (Base Transceiver Station) — станция передатчика.
  • BSC (Base Station Controller) — станция, контролирующая пару станций BTS.
  • NSS (Network and Switching System) — система, переключающая (коммутирующая) вызовы. Каждый вызов, даже в пределах одной соты, коммутируется системой NSS. Система NSS может передавать вызовы в другие сети; для своей работы она использует сигнализацию SS7, которая была рассмотрена при рассмотрении технологии ISDN.

Система NSS состоит из:

  • MSC (Mobile Services Switching Center) — центр переключения услуг, управляющий несколькими BSC.
  • HLR (Home Location Register) — реестр домашних абонентов, содержащий информацию о пользователях — имя, предоставленные сервисы и т. д., то есть базу данных. Аутентификационный центр, также является частью HLR.
  • VLR (Visitors Location Register) — реестр активных абонентов, содержащий базу данных посещений пользователей (данная информация не содержится в HLR).
  • GSMC — шлюз, на который перенаправляются все входящие вызовы.
  • Network Control — центр управления сетью.

Для организации связи между BTS и мобильными телефонами используются коммуникационные каналы. Основной канал, применяющийся для связи, называется TCH (Traffic Channel). Существует несколько типов TCH:

  1. TCH/F канал (F = полная скорость).
  2. ТСН/Н канал (Н = половина скорости).
  3. ТСН/8 канал (1/8 возможной скорости).

Каждый из этих типов каналов ассоциируется с одним медленным SACCH-каналом. Данный канал используется для передачи приблизительно двух сообщений в секунду, в зависимости от типа канала — TCH/F.

Каждая частота передачи делится на восемь слотов (то есть одна частота может использоваться восемью пользователями). Каждый слот может передавать один TCH/F канал, то есть голос со скоростью 13 Кбит/с или данные со скоростью 12.6 Кбит/с.

Слот канала TCH/F также содержит SACCH-канал. Оба канала создают один ассоциированный канал, называемый TACH/F. Это же касается и канала ТСН/Н: только в данном случае создается ассоциированный канал ТАСН/Н.

Теоретически, если не использовать сервисные каналы, можно разделить одну частоту между восемью пользователями, то есть одна частота будет использована для передачи восьми вызовов.

Но кроме каналов TACH/F и ТАСН/Н, которые используются для передачи информации пользователя, сеть GSM использует несколько сервисных каналов:

  • Канал синхронизации SCH (synchronization channel) и канал коррекции FCCH. Оба эти канала гарантируют синхронизацию в пределах ячейки (GSM используют только синхронную связь).
  • ВССН (Broadcast Control Channel) — широковещательный управляющий канал. Каждая ячейка индицируется в этом канале. Данный канал позволяет определить следующую ячейку при перемещении пользователя. ВССН-канал обрабатывается мобильным телефоном, даже если тот выключен. Это значит, что ваше месторасположение можно определить, даже если вы выключили телефон (если же вы не хотите, что бы кто-то узнал о вашем местоположении, отключите аккумулятор вашего мобильного телефона).
  • PAGCH (Paging and Access Channel) — сигнализирует о входящем звонке в пределах определенной области.
  • RACH (Random Access Channel) — используется для связи мобильного телефона и сети. Этот канал задействуется, когда пользователь мобильного телефона хочет кому-то позвонить, т.е. при создании исходящего вызова. Поскольку этот канал использует случайный доступ, могут возникнуть коллизии.
  • CBCH (Cell Broadcast Channel) — канал используется неактивными телефонами: по этому каналу телефоны отправляют сообщения (приблизительно 80 байтов) каждые две минуты, информируя сеть о своей готовности. Сервисные каналы FCCH, SCH, ВССН и PGCH являются частью одного канала TACH/F (занимают часть его полосы).

Как мы уже знаем, соты сети GSM обслуживаются станцией BTS, которая может содержать 1, 4 или 12 передатчиков. В соте (ячейке) используется следующая установка каналов:

  • Для 1-го передатчика (8 слотов):
    1 слот для каналов FCCH, SCH, ВССН, PAGCH, RACH и 4х ТАСН/8.
    7 слотов для TACH/F, то есть одна ячейка может обслуживать одновременно 7 вызовов.
  • Для 4-х передатчиков (всего 4 х 8 = 32 слота):
    1 слот для каналов FCCH, SCH, ВССН, PAGCH, RACH.
    2 слота для 8х ТАСН/8.
    29 слотов для TACH/F, то есть одна ячейка может обслуживать одновременно 29 вызовов.
  • Для 12-ти передатчиков:
    1 слот для каналов FCCH, SCH, ВССН, PAGCH, RACH.
    5 слотов для 8х ТАСН/8.
    87 слотов для TACH/F, то есть одна ячейка может обслуживать одновременно 87 вызовов.

Подключение компьютера к Интернету через сеть GSM

Один из возможных способов подключения к Интернету через сеть GSM заключается в использовании сервисов GSM для передачи данных. При этом задействуется канал TCH/F.

Мобильный телефон подключается к компьютеру с помощью адаптера RA-0, который является частью мобильного телефона или компьютера. Данный адаптер преобразует асинхронный сигнал в синхронный, который будет передаваться по каналу TCH/F.

На рисунке 4 показано, как компьютер подключается к адаптеру RA-0 (Rate Adaptation 0) через асинхронный СОМ-порт. Адаптер преобразует асинхронный сигнал в синхронный, который будет передан мобильным телефоном через BTS другому специальному модулю сети GSM — устройству TRAU (Transcoder/Rate Adapter Unit).

Адаптер RA-0 заполняет канал незначительными колебаниями для достижения скорости 8 Кбит/с или 16 Кбит/с. Модуль TRAU также добавляет в полученный канал колебания — для достижения скорости 64 Кбит/с. Такой сигнал может быть обработан обычными телефонными станциями.

Затем сигнал из NSS попадает как один из В-каналов ISDN на маршрутизатор интернет-провайдера. Провайдер обычно подключен к NSS по линии Е1 или ЕЗ, поэтому одновременно к Интернету могут подключиться несколько пользователей.

После установки канала для передачи данных из сети GSM в Интернет все происходит как обычно: пользователь будет работать по протоколу РРР, который используется, в том числе, и для аутентификации пользователя.

Описанный способ подключения к Интернету имеет два основных недостатка:

  • Очень низкая скорость передачи данных — 9.6 Кбит/с.
  • Требуется время для установки соединения. Стоимость мобильной связи все еще очень высока, поэтому вы после загрузки страницы, вероятно, будете разрывать соединение, чтобы не платить за время в Интернете, которое не используется (пока вы, например, читаете какую-то страницу). Для просмотра следующей страницы, вам нужно будет вновь устанавливать соединение, а это займет больше времени, чем обычное dial-up-соединение по телефонной сети.

Оба эти недостатка исправляются технологией GPRS (General Packet Radio Service) — нe путать с глобальным позиционированием. Эта технология не предусматривает установку виртуального соединения, а использует передачу пакетов. Мобильный телефон постоянно подключен к сети — это и есть основное преимущество.

Технологию GPRS можно сравнить с подключением компьютера по локальной сети. При ее использовании пакеты сразу отправляются маршрутизатором, и нам не нужно ждать, пока установится соединение, как в случае с dial-up-подключением.

Первое поколение сотовой связи

Сейчас самое первое поколение сотовой связи принято называть 1G. Но в годы действия этих сетей никто о таком понятии не подозревал, тогда многие люди не думали о том, что в ближайшем будущем сотовая связь станет совсем другой. Итак, что же представляло собой первое поколение?

Фактически это была аналоговая связь. Её запуск был осуществлён компанией AT&T, а первый звонок состоялся 3 апреля 1973 года — его совершил Мартин Купер, являвшийся главой мобильного подразделения Motorola. Как и в случае со стационарной аналоговой связью, теоретически сотовый телефон можно было задействовать в качестве модема. Но решиться на это мог только какой-нибудь миллионер, ведь минута разговора в те времена стоила огромных денег.

Как и в случае с последующими поколениями, 1G — это лишь название, объединяющее под собой несколько разных стандартов. В Канаде, США, Австралии, а также Южной и Центральной Америке применялся стандарт AMPS. В странах Скандинавии и некоторых государствах получил распространение стандарт NMT и его разновидности. Ну а в Италии, Испании, Англии, Австрии, Ирландии и Японии применялось сотовое оборудование стандарта TACS. И это только три самых популярных варианта реализации сетей! Все эти стандарты были совершенно несовместимы друг с другом. Поэтому британец, приехавший в Америку, не мог разговаривать по своему собственному телефону. Друг от друга разные стандарты отличались не только диапазоном частот, но и радиусом соты, мощностью передатчика, временем переключения на границе соты и соотношением сигнала к шуму. Подробнее со всеми спецификациями вы можете ознакомиться в прилагающейся табличке.

Обычным людям сотовая связь первого поколения стала доступной далеко не сразу. Первое десятилетие некоторые компании занимались только экспериментами. Коммерческая реализация произошла только в 1984 году. Достаточно быстро стало ясно, что аналоговая сотовая связь имеет ряд недостатков. Во-первых, каждая сота имела малую ёмкость — при подключении к ней большого количества абонентов начинались серьезные проблемы. Во-вторых, качество сигнала было далеко от идеала, особенно если абонент находился не на улице, а в здании. Первыми об этих проблемах задумались европейцы. Они начали разрабатывать цифровую связь.

Второе поколение сотовой связи

В 1982 году Европейская конференция почтовых и телекоммуникационных ведомств начала разрабатывать стандарт GSM. Вскоре его начали называть 2G-связью. Изначально GSM предназначался для стран-членов Европейского института стандартов в телекоммуникации. Но позже разработкой заинтересовались Средний Восток, Африка, Азия и Восточная Европа. Коммерческий релиз сетей стандарта GSM состоялся в 1991 году. Цифровой метод передачи данных позволял абонентам обмениваться SMS-сообщениями. А чуть позже им стал доступен выход в Интернет через протокол WAP.

Этот стандарт покорил не всех. Некоторые государства пошли по своему пути. Например, в США многие 2G-сети использовали стандарт D-AMPS. Лишь спустя какое-то время американцы перешли на GSM1900. А в некоторых странах надолго завоевал популярность стандарт CDMA. Он не был совместим с GSM, поэтому под него разрабатывались отдельные мобильные телефоны.

Постепенно на прилавках магазинов стало появляться всё большее количество портативных устройств, умеющих выходить в глобальную паутину. В связи с этим сотовым операторам нужно было что-то делать, так как в 2G остро не хватало скорости передачи данных. Поэтому вскоре появилось промежуточное поколение сотовой связи, которое принято называть 2,5G. В этот стандарт внедрили поддержку технологии GPRS, а затем и EDGE. Отныне мобильным телефоном осуществлялась пакетная передача данных — абонент платил за конкретный объем трафика, а не за время соединения с сервером. Это не только сэкономило людям деньги, но и увеличило скорость передачи и приема данных. В 2G-сетях этот параметр равнялся 9,6 Кбит/с, тогда как поддержка телефоном поколения 2,5G позволяла выходить в интернет на скорости до 170 Кбит/с (GPRS) или даже 384 Кбит/с (EDGE). В некоторых странах эти две технологии называли совершенно по-разному, но суть от этого не менялась.

Выше вы видите табличку, в которой указаны конкретные отличия всех стандартов, принадлежащих к поколениям 2G и 2,5G.

Третье поколение сотовой связи

В IMT-2000 (так принято называть 3G в профессиональной среде) входят пять стандартов: CDMA2000, W-CDMA, TD-CDMA/TD-SCDMA и DECT. Последний не является стандартом сотовой связи, так как он используется в домашней и офисной беспроводной телефонии. Остальные стандарты применяются для обеспечения связью владельцев мобильных телефонов. Все они имеют похожие спецификации. Интересно, что метод работы таких сетей был изобретён в СССР ещё в 1935 году. Однако долгое время данной технологией пользовались лишь военные. В гражданский сегмент она вышла только в середине 1980-ых годов, в силу необходимости развивать мобильную связь.

От 2G третье поколение в первую очередь отличалось повысившейся скоростью передачи данных. Если абонент стоит на месте, то он может скачивать данные на скорости около 2 Мбит/с. При неспешном шаге трафик загружается со скоростью примерно 384 Кбит/с. В транспортном средстве скорость падала ещё сильнее — до 144 Кбит/с.

С появлением смартфонов стало мало и вышеуказанных скоростей. Поэтому достаточно быстро стал популярным стандарт HSPA. Он ознаменовал собой приход поколения 3,5G. Наделенные его поддержкой сотовые телефоны научились передавать данные со скоростью 14,4 Мбит/с. И это было только начало! В дальнейшем стандарт совершенствовался, в результате чего теоретически оказалась достижима скорость 84 Мбит/с. В основе HSPA заложена многокодовая передача данных при сопоставимых размерах сот.

Четвертое поколение сотовой связи

В конце 2000-ых годов на свет стали появляться «айфоны» и «андроиды». Эти смартфоны отличались от предшественников крупным ЖК-дисплеем. Теперь уже никому не хотелось просматривать скромные WAP-странички. Отныне встроенных комплектующих вполне хватало для того, чтобы браузер без каких-либо проблем отображал полноценную страницу, насколько бы тяжелой она не было. Но для её быстрой загрузки требуется высокая скорость. Обеспечить её мог только совершенно новый стандарт. Активная популяризация 4G, или IMT-Advanced, началась в марте 2008 года.

Результатом работы ученых стали два стандарта: WiMAX и LTE. Сейчас вы сами знаете о том, какой из них получил наибольшее распространение. Внедрение LTE позволило существенно увеличить емкость каждой соты, хотя ареал её действия при этом уменьшился. Теперь минимальная скорость передачи данных составляла 100 Мбит/с, чего хватает большинству среднестатистических владельцев смартфон. В дальнейшем этот параметр вырос ещё сильнее. Случилось это за счет реализации технологии LTE-Advanced. В зависимости от категории поддерживаемой аппаратом технологии, может достигаться скорость 400 Мбит/с или даже 1 Гбит/с!

В отличие от предыдущих поколений, стандарт LTE изначально предназначался только для пакетной передачи данных. Но со временем стала доступной и цифровая передача голоса — за это ответственна технология VoLTE. Качество звука при этом гораздо выше, нежели при разговоре посредством сетей 2G или 3G. Однако до сих пор эту технологию поддерживают далеко не все смартфоны.

Поддержка старых стандартов

Как известно, сотовым операторам приходится размещать на своих вышках гору оборудования. В теории можно было бы заменить 2G-передатчики на 3G-передатчики. Но сделать это — значит лишить связи владельцев мобильных телефонов, работающих только в стандарте GSM. Это привело бы к огромным убыткам, так как даже сейчас подобными аппаратами пользуется огромное число людей — все они тут же перешли бы к другому оператору. Вот и получается, что оборудование приходится дополнять, а не менять.

В обозримом будущем отказа от устаревших стандартов не случится. Объясняется это двумя причинами:

  • Кнопочные телефоны до сих пор производятся, а они зачастую не поддерживают даже 3G, не говоря уже о сетях четвертого поколения;
  • 2G-оборудование покрывает сетью более обширную территорию, нежели 3G- или 4G-передатчики аналогичной мощности — это позволяет избавить определенную территорию от «белых пятен».

Теперь вы знаете об основных отличиях разных стандартов. Если вкратце, то в первую очередь изменению подвергались ёмкость сот, ширина покрытия (каждый раз в меньшую сторону, так как таковы законы более высокочастотных сигналов) и скорость передачи данных.

Рубрики: IT

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *